Return condition for oscillating systems with constrained positive control

Oleh Vozniak, Valerii Korobov
V. N. Karazin Kharkiv National University

Problem statemen

In this paper we consider the constrained null-controllability problem for the linear system

$$
\begin{equation*}
\dot{x}=A x+b u, \tag{1}
\end{equation*}
$$

without the assumption that the origin is an equilibrium point of the system. In this case trajectories trajectories cannot be held at the point 0 and by controllability we mean being able to reach the origin at any moment of time $T \geq T_{0}$. In our work we use the concept of the return condition on the interval introduced by V . I. Korobov in the paper [2]. This condition means that for some interval I for any $T \in I$ we can construct a control $u_{T}(t)$ such that the trajectory starting from the origin can return there in the time T.
However this condition is not always easy to check and sometimes we are also interested in constructing the explicit formula for control $u_{T}(t)$. In our paper we consider the construction of control for the oscillatory system

$$
\left\{\begin{array}{l}
\dot{x}_{2 j-1}=x_{2 j}, \\
\dot{x}_{2 j}=-j x_{2 j-1}+u,
\end{array} \quad j=1,2, \ldots n,\right.
$$

with constraints $u \in[c, 1]$ or $u \in\{c, 1\}, c>0$.

Mathematical formulation

Since the solution $x(t)$ of the Cauchy problem

$$
\dot{x}=A x+b u(t), x(0)=x_{0},
$$

has the form

$$
\begin{equation*}
x(t)=e^{A t}\left(x_{0}+\int_{0}^{T} e^{-A \tau} b u(\tau) d \tau\right) \tag{4}
\end{equation*}
$$

and $x_{0}=x_{1}=0$ we get the condition

$$
\begin{equation*}
0=\int_{0}^{T} e^{-A t} b u(t) d t \tag{5}
\end{equation*}
$$

This gives us the trigonometrical momentum problem

$$
\left\{\begin{array}{l}
\int_{0}^{T} \sin j t d t=0, \tag{6}\\
\int_{0}^{T} \cos j t d t=0,
\end{array} \quad j=1,2, \ldots n .\right.
$$

Since for $T=2 \pi u(t)=c$ is a solution for any c we are looking the solutions $u_{T}(t)$ for all T on the interval $I=[2 \pi, 2 \pi+\alpha], \alpha>0$ by using the piecewise control

$$
u_{T}(t)= \begin{cases}c, & 0 \leq t \leq T_{1}, \\ 1, & T_{1} \leq t \leq T_{2}, \\ c, & T_{2} \leq t \leq T_{3}, \\ \cdots & \\ 1, & T_{k-1} \leq t \leq T_{k}, \\ c, & T_{k} \leq t \leq T,\end{cases}
$$

which transforms problem (6) into system of trigonometrical equations

$$
\left\{\begin{array}{l}
c \sin T_{1}+\left(\sin T_{2}-\sin T_{1}\right)+\cdots+c\left(\sin T-\sin T_{k}\right)=0, \\
c \cos T_{1}-c+\left(\cos T_{2}-\cos T_{1}\right)+\cdots+c\left(\cos T-\cos T_{k}\right)=0, \\
\cdots, \\
\frac{c}{n} \sin n T_{1}+\frac{1}{n}\left(\sin n T_{2}-\sin n T_{1}\right)+\cdots+\frac{c}{n}\left(\sin n T-\sin n T_{k}\right)=0, \\
\frac{c}{n} \cos n T_{1}-\frac{c}{n}+\frac{1}{n}\left(\cos n T_{2}-\cos n T_{1}\right)+\cdots+\frac{c}{n}\left(\cos n T-\cos n T_{k}\right)=0 .
\end{array}\right.
$$

Solution with $2 n$ switching points

For $c=\frac{1}{2}$ it is possible to write the general explicit solution with $2 n$ switching points. For $T=T+a, 0<a<\alpha$ It has the following form:

$$
u_{n}(t)=\left\{\begin{array}{lll}
\frac{1}{2}, & 0 & \leq t \leq \frac{2 \pi}{n+1}, \tag{11}\\
1, & \frac{2 \pi}{n+1} & \leq t \leq \frac{2 \pi}{n+1}+a \\
\frac{1}{2}, & \frac{2 \pi}{n+1}+a & \leq t \leq 2 \frac{2 \pi}{n+1}, \\
1, & 2 \frac{2 \pi}{n+1} & \leq t \leq 2 \frac{2 \pi}{n+1}+a \\
\cdots & & \\
\cdots, & n \frac{2 \pi}{n+1} & \leq t \leq n \frac{2 \pi}{n+1}+a \\
\frac{1}{2}, & n \frac{2 \pi}{n+1}+a & \leq t \leq 2 \pi+a
\end{array}\right.
$$

The graph control for $n=6, c=\frac{1}{2}, a=0.1$ is shown in Figure 1, the individual trajectories are shown in Figure 2. In Figures 3 and 4 the phase trajectories for two first and two last coordinates are shown.

Figure 1. Graph of control

Figure 3. Phase trajectory for $x_{1} x_{2}$

Figure 2. Individual trajectories

Figure 4. Phase trajectory for x_{11}, x_{12}
For $c \neq \frac{1}{2}$ it is harder to obtain general solution. For the case $n=1$ we were able to obtain it in explicit form:

$$
\begin{aligned}
& T_{1}=\arctan \left(\frac{\sin \left(\frac{a}{2}\right)\left(\sqrt{2\left(\cos (a)+2\left(\frac{1}{c}\right)^{2}-\frac{4}{c}+1\right)}-2 \cos \left(\frac{a}{2}\right)\right)}{\cos \left(\frac{a}{2}\right) \sqrt{2\left(\cos (a)+2\left(\frac{1}{c}\right)^{2}-\frac{4}{c}+1\right)}-\cos (a)+1}\right)+\pi, \\
& T_{2}=\arctan \left(\frac{\sin \left(\frac{a}{2}\right)\left(\sqrt{2\left(\cos (a)+2\left(\frac{1}{c}\right)^{2}-\frac{4}{c}+1\right)}+2 \cos \left(\frac{a}{2}\right)\right)}{\cos \left(\frac{a}{2}\right) \sqrt{2\left(\cos (a)+2\left(\frac{1}{c}\right)^{2}-\frac{4}{c}+1\right)}+\cos (a)-1}\right)+\pi .
\end{aligned}
$$

Solution with 2 switching points

Using the symmetry of the problem for $c=\frac{1}{2}$ we can reduce the number of switching points to only 2 for any size n. For this we write the momentum problem in exponential form

$$
\int_{0}^{T} u(t) e^{k i t} d t=0, k=1,2, \ldots, n
$$

and consider control

$$
u(t)= \begin{cases}c, & 0 \leq t \leq T_{1} \tag{12}\\ 1, & T_{1} \leq t \leq T_{2} \\ c, & T_{2} \leq T\end{cases}
$$

with $T-T_{2}=T_{1}-0$. By substituting $e^{T_{1}}=x, e^{T}=s \Longrightarrow e^{T_{2}}=\frac{s}{x}$ we get the system of equations for x and s :

$$
\begin{align*}
& -c+(c-1) x+(1-c) \frac{s}{x}+c s=0, \\
& -c+(c-1) x^{2}+(1-c) \frac{s^{2}}{x^{2}}+c s^{2}=0, \tag{13}
\end{align*}
$$

It always has a solution $x=s$, so we can choose $T=2 \pi+T_{1}, T_{2}=2 \pi$. On Figures 5 and 6 the trajectories for individual and the pairs of coordinates are shown.

Figure 5. Individual trajectories for $n=4$
Figure 6. Pairs trajectories for $n=4$
It also should be noted that this solution does not depend on problem size n. Instead of control (12) we can also choose

$$
u(t)=\left\{\begin{array}{l}
c, \quad 0 \leq t \leq T_{1} \tag{14}\\
1, \quad T_{1} \leq t \leq T_{2}, \\
1-c, \quad T_{2} \leq T
\end{array}\right.
$$

Generalization

Since the system (8) depends only on exponent of matrix A and vector b, the control (12) is true for any n and for any set of rational numbers we can find a common multiple divisible by 2π the following theorem holds
Theorem For the system

$$
\begin{equation*}
\dot{x}=A x+b u, c \leq u \leq 1, c \leq \frac{1}{2} . \tag{15}
\end{equation*}
$$

with matrix A of size $2 n \times 2 n$ and simple imaginary eigenvalues $\pm i \nu_{k}, k=1, \ldots, n$ and such that rank $\left(b, A b, \ldots, A^{2 n-1} b\right)=2 n$, the return condition is satisfied if ν are rational numbers.

References

[^0]
[^0]: Blanchini, R. M.L-_eal Conter Vol. 21, pp. 714-720, 1983.
 [2]. Korobov, V.I. Geometric Criterion for Controllability under Arbitrary Constraints on the Control. J Optim Theory Appl 134, 161-176 (2007). https://doi.org/10.1007/s10957-007-9212-2,
 3] Margheri, A. On the O-local controllability of a linear control system. J Optim Theory Appl 66, 61-69 (1990) htps.//doi.org 10.1007/BF00940533.

